newsletter-to-web/kuchiki/src/tree.rs

490 lines
16 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use html5ever::tree_builder::QuirksMode;
use html5ever::QualName;
use std::cell::{Cell, RefCell};
use std::fmt;
use std::ops::Deref;
use std::rc::{Rc, Weak};
use crate::attributes::{Attribute, Attributes, ExpandedName};
use crate::cell_extras::*;
use crate::iter::NodeIterator;
/// Node data specific to the node type.
#[derive(Debug, PartialEq, Clone)]
pub enum NodeData {
/// Element node
Element(ElementData),
/// Text node
Text(RefCell<String>),
/// Comment node
Comment(RefCell<String>),
/// Processing instruction node
ProcessingInstruction(RefCell<(String, String)>),
/// Doctype node
Doctype(Doctype),
/// Document node
Document(DocumentData),
/// Document fragment node
DocumentFragment,
}
/// Data specific to doctype nodes.
#[derive(Debug, PartialEq, Clone)]
pub struct Doctype {
/// The name of the doctype
pub name: String,
/// The public ID of the doctype
pub public_id: String,
/// The system ID of the doctype
pub system_id: String,
}
/// Data specific to element nodes.
#[derive(Debug, PartialEq, Clone)]
pub struct ElementData {
/// The namespace and local name of the element, such as `ns!(html)` and `body`.
pub name: QualName,
/// The attributes of the elements.
pub attributes: RefCell<Attributes>,
/// If the element is an HTML `<template>` element,
/// the document fragment node that is the root of template contents.
pub template_contents: Option<NodeRef>,
}
/// Data specific to document nodes.
#[derive(Debug, PartialEq, Clone)]
pub struct DocumentData {
#[doc(hidden)]
pub _quirks_mode: Cell<QuirksMode>,
}
impl DocumentData {
/// The quirks mode of the document, as determined by the HTML parser.
#[inline]
pub fn quirks_mode(&self) -> QuirksMode {
self._quirks_mode.get()
}
}
/// A strong reference to a node.
///
/// A node is destroyed when the last strong reference to it dropped.
///
/// Each node holds a strong reference to its first child and next sibling (if any),
/// but only a weak reference to its last child, previous sibling, and parent.
/// This is to avoid strong reference cycles, which would cause memory leaks.
///
/// As a result, a single `NodeRef` is sufficient to keep alive a node
/// and nodes that are after it in tree order
/// (its descendants, its following siblings, and their descendants)
/// but not other nodes in a tree.
///
/// To avoid detroying nodes prematurely,
/// programs typically hold a strong reference to the root of a document
/// until theyre done with that document.
#[derive(Clone, Debug)]
pub struct NodeRef(pub Rc<Node>);
impl Deref for NodeRef {
type Target = Node;
#[inline]
fn deref(&self) -> &Node {
&*self.0
}
}
impl Eq for NodeRef {}
impl PartialEq for NodeRef {
#[inline]
fn eq(&self, other: &NodeRef) -> bool {
let a: *const Node = &*self.0;
let b: *const Node = &*other.0;
a == b
}
}
/// A node inside a DOM-like tree.
pub struct Node {
parent: Cell<Option<Weak<Node>>>,
previous_sibling: Cell<Option<Weak<Node>>>,
next_sibling: Cell<Option<Rc<Node>>>,
first_child: Cell<Option<Rc<Node>>>,
last_child: Cell<Option<Weak<Node>>>,
data: NodeData,
}
impl fmt::Debug for Node {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "{:?} @ {:?}", self.data, self as *const Node)
}
}
/// Prevent implicit recursion when dropping nodes to avoid overflowing the stack.
///
/// The implicit drop is correct, but recursive.
/// In the worst case (where no node has both a next sibling and a child),
/// a tree of a few tens of thousands of nodes could cause a stack overflow.
///
/// This `Drop` implementations makes sure the recursion does not happen.
/// Instead, it has an explicit `Vec<Rc<Node>>` stack to traverse the subtree,
/// but only following `Rc<Node>` references that are "unique":
/// that have a strong reference count of 1.
/// Those are the nodes that would have been dropped recursively.
///
/// The stack holds ancestors of the current node rather than preceding siblings,
/// on the assumption that large document trees are typically wider than deep.
impl Drop for Node {
fn drop(&mut self) {
// `.take_if_unique_strong()` temporarily leaves the tree in an inconsistent state,
// as the corresponding `Weak` reference in the other direction is not removed.
// It is important that all `Some(_)` strong references it returns
// are dropped by the end of this `drop` call,
// and that no user code is invoked in-between.
// Sharing `stack` between these two calls is not necessary,
// but it allows re-using memory allocations.
let mut stack = Vec::new();
if let Some(rc) = self.first_child.take_if_unique_strong() {
non_recursive_drop_unique_rc(rc, &mut stack);
}
if let Some(rc) = self.next_sibling.take_if_unique_strong() {
non_recursive_drop_unique_rc(rc, &mut stack);
}
fn non_recursive_drop_unique_rc(mut rc: Rc<Node>, stack: &mut Vec<Rc<Node>>) {
loop {
if let Some(child) = rc.first_child.take_if_unique_strong() {
stack.push(rc);
rc = child;
continue;
}
if let Some(sibling) = rc.next_sibling.take_if_unique_strong() {
// The previous value of `rc: Rc<Node>` is dropped here.
// Since it was unique, the corresponding `Node` is dropped as well.
// `<Node as Drop>::drop` does not call `drop_rc`
// as both the first child and next sibling were already taken.
// Weak reference counts decremented here for `Cell`s that are `Some`:
// * `rc.parent`: still has a strong reference in `stack` or elsewhere
// * `rc.last_child`: this is the last weak ref. Deallocated now.
// * `rc.previous_sibling`: this is the last weak ref. Deallocated now.
rc = sibling;
continue;
}
if let Some(parent) = stack.pop() {
// Same as in the above comment.
rc = parent;
continue;
}
return;
}
}
}
}
impl NodeRef {
/// Create a new node.
#[inline]
pub fn new(data: NodeData) -> NodeRef {
NodeRef(Rc::new(Node {
parent: Cell::new(None),
first_child: Cell::new(None),
last_child: Cell::new(None),
previous_sibling: Cell::new(None),
next_sibling: Cell::new(None),
data,
}))
}
/// Create a new element node.
#[inline]
pub fn new_element<I>(name: QualName, attributes: I) -> NodeRef
where
I: IntoIterator<Item = (ExpandedName, Attribute)>,
{
NodeRef::new(NodeData::Element(ElementData {
template_contents: if name.expanded() == expanded_name!(html "template") {
Some(NodeRef::new(NodeData::DocumentFragment))
} else {
None
},
name,
attributes: RefCell::new(Attributes {
map: attributes.into_iter().collect(),
}),
}))
}
/// Create a new text node.
#[inline]
pub fn new_text<T: Into<String>>(value: T) -> NodeRef {
NodeRef::new(NodeData::Text(RefCell::new(value.into())))
}
/// Create a new comment node.
#[inline]
pub fn new_comment<T: Into<String>>(value: T) -> NodeRef {
NodeRef::new(NodeData::Comment(RefCell::new(value.into())))
}
/// Create a new processing instruction node.
#[inline]
pub fn new_processing_instruction<T1, T2>(target: T1, data: T2) -> NodeRef
where
T1: Into<String>,
T2: Into<String>,
{
NodeRef::new(NodeData::ProcessingInstruction(RefCell::new((
target.into(),
data.into(),
))))
}
/// Create a new doctype node.
#[inline]
pub fn new_doctype<T1, T2, T3>(name: T1, public_id: T2, system_id: T3) -> NodeRef
where
T1: Into<String>,
T2: Into<String>,
T3: Into<String>,
{
NodeRef::new(NodeData::Doctype(Doctype {
name: name.into(),
public_id: public_id.into(),
system_id: system_id.into(),
}))
}
/// Create a new document node.
#[inline]
pub fn new_document() -> NodeRef {
NodeRef::new(NodeData::Document(DocumentData {
_quirks_mode: Cell::new(QuirksMode::NoQuirks),
}))
}
/// Return the concatenation of all text nodes in this subtree.
pub fn text_contents(&self) -> String {
let mut s = String::new();
for text_node in self.inclusive_descendants().text_nodes() {
s.push_str(&text_node.borrow());
}
s
}
}
impl Node {
/// Return a reference to this nodes node-type-specific data.
#[inline]
pub fn data(&self) -> &NodeData {
&self.data
}
/// If this node is an element, return a reference to element-specific data.
#[inline]
pub fn as_element(&self) -> Option<&ElementData> {
match self.data {
NodeData::Element(ref value) => Some(value),
_ => None,
}
}
/// If this node is a text node, return a reference to its contents.
#[inline]
pub fn as_text(&self) -> Option<&RefCell<String>> {
match self.data {
NodeData::Text(ref value) => Some(value),
_ => None,
}
}
/// If this node is a comment, return a reference to its contents.
#[inline]
pub fn as_comment(&self) -> Option<&RefCell<String>> {
match self.data {
NodeData::Comment(ref value) => Some(value),
_ => None,
}
}
/// If this node is a document, return a reference to doctype-specific data.
#[inline]
pub fn as_doctype(&self) -> Option<&Doctype> {
match self.data {
NodeData::Doctype(ref value) => Some(value),
_ => None,
}
}
/// If this node is a document, return a reference to document-specific data.
#[inline]
pub fn as_document(&self) -> Option<&DocumentData> {
match self.data {
NodeData::Document(ref value) => Some(value),
_ => None,
}
}
/// Return a reference to the parent node, unless this node is the root of the tree.
#[inline]
pub fn parent(&self) -> Option<NodeRef> {
self.parent.upgrade().map(NodeRef)
}
/// Return a reference to the first child of this node, unless it has no child.
#[inline]
pub fn first_child(&self) -> Option<NodeRef> {
self.first_child.clone_inner().map(NodeRef)
}
/// Return a reference to the last child of this node, unless it has no child.
#[inline]
pub fn last_child(&self) -> Option<NodeRef> {
self.last_child.upgrade().map(NodeRef)
}
/// Return a reference to the previous sibling of this node, unless it is a first child.
#[inline]
pub fn previous_sibling(&self) -> Option<NodeRef> {
self.previous_sibling.upgrade().map(NodeRef)
}
/// Return a reference to the next sibling of this node, unless it is a last child.
#[inline]
pub fn next_sibling(&self) -> Option<NodeRef> {
self.next_sibling.clone_inner().map(NodeRef)
}
/// Detach a node from its parent and siblings. Children are not affected.
///
/// To remove a node and its descendants, detach it and drop any strong reference to it.
pub fn detach(&self) {
let parent_weak = self.parent.take();
let previous_sibling_weak = self.previous_sibling.take();
let next_sibling_strong = self.next_sibling.take();
let previous_sibling_opt = previous_sibling_weak
.as_ref()
.and_then(|weak| weak.upgrade());
if let Some(next_sibling_ref) = next_sibling_strong.as_ref() {
next_sibling_ref
.previous_sibling
.replace(previous_sibling_weak);
} else if let Some(parent_ref) = parent_weak.as_ref() {
if let Some(parent_strong) = parent_ref.upgrade() {
parent_strong.last_child.replace(previous_sibling_weak);
}
}
if let Some(previous_sibling_strong) = previous_sibling_opt {
previous_sibling_strong
.next_sibling
.replace(next_sibling_strong);
} else if let Some(parent_ref) = parent_weak.as_ref() {
if let Some(parent_strong) = parent_ref.upgrade() {
parent_strong.first_child.replace(next_sibling_strong);
}
}
}
}
impl NodeRef {
/// Append a new child to this node, after existing children.
///
/// The new child is detached from its previous position.
pub fn append(&self, new_child: NodeRef) {
new_child.detach();
new_child.parent.replace(Some(Rc::downgrade(&self.0)));
if let Some(last_child_weak) = self.last_child.replace(Some(Rc::downgrade(&new_child.0))) {
if let Some(last_child) = last_child_weak.upgrade() {
new_child.previous_sibling.replace(Some(last_child_weak));
debug_assert!(last_child.next_sibling.is_none());
last_child.next_sibling.replace(Some(new_child.0));
return;
}
}
debug_assert!(self.first_child.is_none());
self.first_child.replace(Some(new_child.0));
}
/// Prepend a new child to this node, before existing children.
///
/// The new child is detached from its previous position.
pub fn prepend(&self, new_child: NodeRef) {
new_child.detach();
new_child.parent.replace(Some(Rc::downgrade(&self.0)));
if let Some(first_child) = self.first_child.take() {
debug_assert!(first_child.previous_sibling.is_none());
first_child
.previous_sibling
.replace(Some(Rc::downgrade(&new_child.0)));
new_child.next_sibling.replace(Some(first_child));
} else {
debug_assert!(self.first_child.is_none());
self.last_child.replace(Some(Rc::downgrade(&new_child.0)));
}
self.first_child.replace(Some(new_child.0));
}
/// Insert a new sibling after this node.
///
/// The new sibling is detached from its previous position.
pub fn insert_after(&self, new_sibling: NodeRef) {
new_sibling.detach();
new_sibling.parent.replace(self.parent.clone_inner());
new_sibling
.previous_sibling
.replace(Some(Rc::downgrade(&self.0)));
if let Some(next_sibling) = self.next_sibling.take() {
debug_assert!(next_sibling.previous_sibling().unwrap() == *self);
next_sibling
.previous_sibling
.replace(Some(Rc::downgrade(&new_sibling.0)));
new_sibling.next_sibling.replace(Some(next_sibling));
} else if let Some(parent) = self.parent() {
debug_assert!(parent.last_child().unwrap() == *self);
parent
.last_child
.replace(Some(Rc::downgrade(&new_sibling.0)));
}
self.next_sibling.replace(Some(new_sibling.0));
}
/// Insert a new sibling before this node.
///
/// The new sibling is detached from its previous position.
pub fn insert_before(&self, new_sibling: NodeRef) {
new_sibling.detach();
new_sibling.parent.replace(self.parent.clone_inner());
new_sibling.next_sibling.replace(Some(self.0.clone()));
if let Some(previous_sibling_weak) = self
.previous_sibling
.replace(Some(Rc::downgrade(&new_sibling.0)))
{
if let Some(previous_sibling) = previous_sibling_weak.upgrade() {
new_sibling
.previous_sibling
.replace(Some(previous_sibling_weak));
debug_assert!(previous_sibling.next_sibling().unwrap() == *self);
previous_sibling.next_sibling.replace(Some(new_sibling.0));
return;
}
}
if let Some(parent) = self.parent() {
debug_assert!(parent.first_child().unwrap() == *self);
parent.first_child.replace(Some(new_sibling.0));
}
}
}